958 resultados para Quantitative real-time PCR


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Tese de Doutoramento em Biologia apresentada à Faculdade de Ciências da Universidade do Porto, 2015.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Currently DNA profiling methods only compare a suspect’s DNA with DNA left at the crime scene. When there is no suspect, it would be useful for the police to be able to predict what the person of interest looks like by analysing the DNA left behind in a crime scene. Determination of the age of the suspect is an important factor in creating an identikit. Human somatic cells gradually lose telomeric repeats with age. This study investigated if one could use a correlation between telomere length and age, to predict the age of an individual from their DNA. Telomere length, in buccal cells, of 167 individuals aged between 1 and 96 years old was measured using real-time quantitative PCR. Telomere length decreased with age (r = −0.185, P < 0.05) and the age of an individual could be roughly determined by the following formula: (age = relative telomere length −1.5/−0.005). The regression (R2) value between telomere length and age was not, vert, similar0.04, which is too low to be use for forensics. The causes for the presence of large variation in telomere lengths in the population were further investigated. The age prediction accuracies were low even after dividing samples into non-related Caucasians, males and females (5%, 9% and 1%, respectively). Mean telomere lengths of eight age groups representing each decade of life showed non-linear decrease in telomere length with age. There were variations in telomere lengths even among similarly aged individuals aged 26 years old (n = 10) and age 54 years old (n = 9). Therefore, telomere length measurement by real-time quantitative PCR cannot be used to predict age of a person, due to the presence of large inter-individual variations in telomere lengths.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Quantitative real time PCR was performed on genomic DNA from 40 primary oral carcinomas and the normal adjacent tissues. The target genes ECGFB, DIA1, BIK, and PDGFB and the microsatellite markers D22S274 and D22S277, mapped on 22q13, were selected according to our previous loss of heterozygosity findings in head and neck tumors. Quantitative PCR relies on the comparison of the amount of product generated from a target gene and that generated from a disomic reference gene (GAPDH-housekeeping gene). Reactions have been performed with normal control in triplicates, using the 7700 Sequence Detection System (PE Applied Biosystems). Losses in the sequences D22S274 (22q13.31) and in the DIA1 (22q13.2-13.31) gene were detected in 10 out of 40 cases (25%) each. Statistically significant correlations were observed for patients with relative copy number loss of the marker D22S274 and stages T3-T4 of disease (P=0.025), family history of cancer (P = 0.001), and death (P = 0.021). Relative copy number loss involving the DIA1 gene was correlated to family history of cancer (P<0.001), death (P=0.002), and consumption of alcohol (P=0.026). Log-rank test revealed a significant decrease in survival (P=0.0018) for patients with DIA1 gene loss. Relative copy number losses detected in these sequences may be related to disease progression and a worse prognosis in patients with oral cancer.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Quantitative reverse transcriptase real-time PCR (QRT-PCR) is a robust method to quantitate RNA abundance. The procedure is highly sensitive and reproducible as long as the initial RNA is intact. However, breaks in the RNA due to chemical or enzymatic cleavage may reduce the number of RNA molecules that contain intact amplicons. As a consequence, the number of molecules available for amplification decreases. We determined the relation between RNA fragmentation and threshold values (Ct values) in subsequent QRT-PCR for four genes in an experimental model of intact and partially hydrolyzed RNA derived from a cell line and we describe the relation between RNA integrity, amplicon size and Ct values in this biologically homogenous system. We demonstrate that degradation-related shifts of Ct values can be compensated by calculating delta Ct values between test genes and the mean values of several control genes. These delta Ct values are less sensitive to fragmentation of the RNA and are unaffected by varying amounts of input RNA. The feasibility of the procedure was demonstrated by comparing Ct values from a larger panel of genes in intact and in partially degraded RNA. We compared Ct values from intact RNA derived from well-preserved tumor material and from fragmented RNA derived from formalin-fixed, paraffin-embedded (FFPE) samples of the same tumors. We demonstrate that the relative abundance of gene expression can be based on FFPE material even when the amount of RNA in the sample and the extent of fragmentation are not known.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

To address food safety concerns of the public regarding the potential transfer of recombinant DNA (cry1Ab) and protein (Cry1Ab) into the milk of cows fed genetically modified maize (MON810), a highly specific and sensitive quantitative real-time PCR (qPCR) and an ELISA were developed for monitoring suspicious presence of novel DNA and Cry1Ab protein in bovine milk. The developed assays were validated according to the assay validation criteria specified in the European Commission Decision 2002/657/EC. The detection limit and detection capability of the qPCR and ELISA were 100 copies of cry1Ab microL(-1) milk and 0.4 ng mL(-1) Cry1Ab, respectively. Recovery rates of 84.9% (DNA) and 97% (protein) and low (<15%) imprecision revealed the reliable and accurate estimations. A specific qPCR amplification and use of a specific antibody in ELISA ascertained the high specificity of the assays. Using these assays for 90 milk samples collected from cows fed either transgenic (n = 8) or non-transgenic (n = 7) rations for 6 months, neither cry1Ab nor Cry1Ab protein were detected in any analyzed sample at the assay detection limits.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The assessment of ERa, PgR and HER2 status is routinely performed today to determine the endocrine responsiveness of breast cancer samples. Such determination is usually accomplished by means of immunohistochemistry and in case of HER2 amplification by means of fluorescent in situ hybridization (FISH). The analysis of these markers can be improved by simultaneous measurements using quantitative real-time PCR (Qrt-PCR). In this study we compared Qrt-PCR results for the assessment of mRNA levels of ERa, PgR, and the members of the human epidermal growth factor receptor family, HER1, HER2, HER3 and HER4. The results were obtained in two independent laboratories using two different methods, SYBR Green I and TaqMan probes, and different primers. By linear regression we demonstrated a good concordance for all six markers. The quantitative mRNA expression levels of ERa, PgR and HER2 also strongly correlated with the respective quantitative protein expression levels prospectively detected by EIA in both laboratories. In addition, HER2 mRNA expression levels correlated well with gene amplification detected by FISH in the same biopsies. Our results indicate that both Qrt-PCR methods were robust and sensitive tools for routine diagnostics and consistent with standard methodologies. The developed simultaneous assessment of several biomarkers is fast and labor effective and allows optimization of the clinical decision-making process in breast cancer tissue and/or core biopsies.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

BACKGROUND Flavobacterium psychrophilum is the agent of Bacterial Cold Water Disease and Rainbow Trout Fry Syndrome, two diseases leading to high mortality. Pathogen detection is mainly carried out using cultures and more rapid and sensitive methods are needed. RESULTS We describe a qPCR technique based on the single copy gene β' DNA-dependent RNA polymerase (rpoC). Its detection limit was 20 gene copies and the quantification limit 103 gene copies per reaction. Tests on spiked spleens with known concentrations of F. psychrophilum (106 to 101 cells per reaction) showed no cross-reactions between the spleen tissue and the primers and probe. Screening of water samples and spleens from symptomless and infected fishes indicated that the pathogen was already present before the outbreaks, but F. psychrophilum was only quantifiable in spleens from diseased fishes. CONCLUSIONS This qPCR can be used as a highly sensitive and specific method to detect F. psychrophilum in different sample types without the need for culturing. qPCR allows a reliable detection and quantification of F. psychrophilum in samples with low pathogen densities. Quantitative data on F. psychrophilum abundance could be useful to investigate risk factors linked to infections and also as early warning system prior to potential devastating outbreak.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Today, quantitative real-time PCR is the method of choice for rapid and reliable quantification of mRNA transcription. However, for an exact comparison of mRNA transcription in different samples or tissues it is crucial to choose the appropriate reference gene. Recently glyceraldehyde 3-phosphate dehydrogenase and P-actin have been used for that purpose. However, it has been reported that these genes as well as alternatives, like rRNA genes, are unsuitable references, because their transcription is significantly regulated in various experimental settings and variable in different tissues. Therefore, quantitative real-time PCR was used to determine the mRNA transcription profiles of 13 putative reference genes, comparing their transcription in 16 different tissues and in CCRF-HSB-2 cells stimulated with 12-O-tetradecanoylphorbol-13-acetate and ionomycin. Our results show that Classical reference genes are indeed unsuitable, whereas the RNA polymerase II gene was the gene with the most constant expression in different tissues and following stimulation in CCRF-HSB-2 cells. (C) 2003 Elsevier Inc. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Orthotopic or intracardiac injection of human breast cancer cell lines into immunocompromised mice allows study of the molecular basis of breast cancer metastasis. We have established a quantitative real-time PCR approach to analyze metastatic spread of human breast cancer cells inoculated into nude mice via these routes. We employed MDA-MB-231 human breast cancer cells genetically tagged with a bacterial β-galactosidase (Lac-Z) retroviral vector, enabling their detection by TaqMan® real-time PCR. PCR detection was linear, specific, more sensitive than conventional PCR, and could be used to directly quantitate metastatic burden in bone and soft organs. Attesting to the sensitivity and specificity of the PCR detection strategy, as few as several hundred metastatic MDA-MB-231 cells were detectable in 100 μm segments of paraffin-embedded lung tissue, and only in samples adjacent to sections that scored positive by histological detection. Moreover, the measured real-time PCR metastatic burden in the bone environment (mouse hind-limbs, n = 48) displayed a high correlation to the degree of osteolytic damage observed by high resolution X-ray analysis (r2 = 0.972). Such a direct linear relationship to tumor burden and bone damage substantiates the so-called 'vicious cycle' hypothesis in which metastatic tumor cells promote the release of factors from the bone which continue to stimulate the tumor cells. The technique provides a useful tool for molecular and cellular analysis of human breast cancer metastasis to bone and soft organs, can easily be extended to other cell/marker/organ systems, and should also find application in preclinical assessment of anti-metastatic modalities.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The further development of Taqman quantitative real-time PCR (qPCR) assays for the absolute quantitation of Marek's disease virus serotype 1 (MDV1) and Herpesvirus of turkeys (HVT) viruses is described and the sensitivity and reproducibility of each assay reported. Using plasmid DNA copies, the lower limit of detection was determined to be 5 copies for the MDV1 assay and 75 copies for the HVT assay. Both assays were found to be highly reproducible for Ct values and calculated copy numbers with mean intra- and inter-assay coefficients of variation being less than 5% for Ct and 20% for calculated copy number. The genome copy number of MDV1 and HVT viruses was quantified in PBL and feather tips from experimentally infected chickens, and field poultry dust samples. Parallelism was demonstrated between the plasmid-based standard curves, and standard curves derived from infected spleen material containing both viral and host DNA, allowing the latter to be used for absolute quantification. These methods should prove useful for the reliable differentiation and absolute quantitation of MDV1 and HVT viruses in a wide range of samples.